Ir al contenido principal

Producen rayos X con cinta adhesiva


La electrificación por contacto es un fenómeno común en nuestra vida cotidiana. ¿Cuántos globos no se han pegado a la pared después de frotarlos vigorosamente contra el cabello? ¿Quién no ha recibido alguna vez un ligero shock eléctrico al tocar el picaporte tras haber caminado descalzo sobre la alfombra? Los pequeños destellos que alcanzan a vislumbrarse son el resultado del paso de electrones de una superficie a otra a través del aire, de una manera muy similar a la caída de un rayo. De hecho, en el caso del rayo los electrones alcanzan energías tan altas que pueden llegar a producir rayos X.

Los rayos X (los mismos que usan los dentistas para detectar caries) son ondas electromagnéticas de la misma naturaleza que la luz visible pero con energías por lo menos 1000 veces mayores. En el caso de un relámpago, por ejemplo, puede que su generación no resulte tan impresionante dadas las grandes cantidades de corriente que se descargan. Lo que sí resulta sorprendente es que sólo basten tres sencillos ingredientes para generar rayos X en un laboratorio: un rollo de cinta adhesiva, una cámara de vacío y un motor (o un engrane) para despegar la cinta.

En el Laboratorio de Acústica y bajas Temperaturas del departamento de Física de la Universidad de California en Los Ángeles (UCLA), hallamos que cuando un rollo de cinta adhesiva (del tipo del que se compra en la tienda de la esquina!) es despegada en vacío (a un millonésimo de la presión atmosférica), la cantidad de rayos X que se producen en 10 segundos es suficiente como para obtener la radiografía de un dedo humano.

En el video se muestra la cinta adhesiva despegándose dentro de la cámara y frente a una ventana transparente sobre la que se coloco la mano a radiografiar. La radiografía obtenida fue superpuesta sobre la porción de la mano que fue expuesta a la radiación, el dedo meñique.

La descarga de rayos X se da en pulsos que duran apenas un par de nano-segundos (1 nano-segundo= 1/1000,000,000 segundos), conteniendo cada uno cerca de 500,000 rayos X de energías típicas de 15,000 Volts –electrón (Volt-electrón, o  ‘eV’, se define como la energía que tiene un electrón en un potencial de 1 Volt. La luz visible se encuentra en un rango de 2 a 3 eV). El que la cinta adhesiva este en vacío también provoca que la fuerza necesaria para despegarla aumente 10% por la interacción electrostática. Todo esto sugiere que la densidad de carga en las superficies de la cinta es 10 veces mayor de lo que se había medido en experimentos previos..

Estos resultados fueron publicados en la revista científica Nature de origen Inglés en su edición del 23 de octubre del presente año. (video)

¿Por qué se producen rayos X?

Todo cuerpo (en equilibrio) tiende a ser electrónicamente neutro: tiene la misma cantidad de electrones y protones porque este es un estado de minima energía. Cuando dos cuerpos originalmente neutros son puestos en contacto, se lleva a cabo un reacomodo eléctrico en las superficies. Es decir, dependiendo de si se trata de metales, semiconductores, o aislantes, al ponerse en contacto puede haber transferencia de electrones o iones de un material a otro para alcanzar lo que se llama equilibrio termodinámico. Cuando estos materiales son separados abruptamente cada una de las superficies no tienen tiempo de regresarle a la otra las cargas que adquirió en el contacto, de modo que una superficie queda cargada positivamente (con falta de electrones) y otra negativamente (con exceso de electrones). Al separar las superficies cargadas, la energía potencial de los electrones aumenta hasta llegar al punto en que se ‘despegan’ de la superficie negativa y se aceleran hacia la superficie positiva. Si los electrones logran acelerarse lo suficiente antes de colisionar con la parte positiva, al desacelerarse pueden producir rayos X a través de un mecanismo que se conoce como radiación de tipo Bremsstrahlung (‘Romper’ en Alemán).  La inmensa mayoría de los generadores comerciales de rayos X funcionan precisamente con este mismo principio, solo que el alto voltaje proviene de la toma de corriente (el enchufe en la pared), y no de electrificación por contacto.

¿Por qué es necesario el vacío?

Los electrones pueden perder su energía si colisionan con moléculas de gas que encuentren a su paso. Si esto ocurre es posible que ionicen las moléculas del gas produciendo subsecuentemente luz visible en lugar de rayos X (si se despega una cinta adhesiva en la oscuridad, esta emite una tenue luz azul).

¿Es seguro usar cinta adhesiva?

Una preocupación  generalizada que ha surgido a raíz de este estudio, gira en torno a la seguridad de usar cinta adhesiva en la escuela, casa u oficina. De todas los tipos de adhesivos que hemos probado, ninguno genera rayos X a presión atmosférica. No podemos asegurar que este sea el caso para todas las marcas pero dado el fenómeno físico que está detrás, creemos que es poco probable. Si a alguien le sirve de referencia, nosotros pensamos seguir usando cintas adhesivas en nuestra vida cotidiana.

Perspectivas

Físicamente, se trata un fenómeno muy robusto. Los rayos X no sólo se producen despegando cinta adhesiva comercial. En general, muchos tipos de polímeros pegajosos generan rayos X cuando son despegados no solo de otros aislantes, sino también de diversos metales.  Por ello creemos que el flujo de rayos X puede aumentar de manera importante ajustando las características químicas del polímero y el substrato, y la geometría en la que se despega.

Relevancia tecnológica

Creemos que este descubrimiento tiene el potencial de convertirse en un proceso muy económico para la producción de rayos X, incluso para fines médicos En particular, nos gustaría pensar que en un futuro no muy lejano el bajo costo y la falta de necesidad de electricidad para su uso faciliten el acceso a radiografías en zonas rurales. Aunque actualmente existen limitantes técnicas para su implementación directa, uno de los roles principales de la Ciencia es precisamente el abrir puertas para el desarrollo de tecnologías que nos ayuden a vivir mejor.

Con información de la UCLA y Nature

Comentarios

Entradas populares de este blog

La serotonina, responsable de las plagas de langostas

Una langosta sola es un insecto inofensivo y vulnerable. Pero si se une a miles o incluso millones de compañeras, juntas forman una plaga que puede arrasar cosechas enteras. Un equipo de investigadores de la Universidad de Oxford ha identificado que el aumento de la serotonina, un neurotransmisor conocido también como “hormona del bienestar”, es responsable del comportamiento gregario de las langostas del desierto. Los detalles se publican en la revista Science. Los científicos, dirigidos por Michael Anstey, estudiaron los niveles de serotonina en las langostas mientras adoptaban tanto conductas solitarias como gregarias. Los resultados revelaron que cuando las langostas se reúnen en enjambres tienen niveles de serotonina casi tres veces superiores que cuando se comportan como insectos tímidos e incluso antisociales. Antes de 1921 se pensaba que las langostas solitarias y las gregarias eran especies diferentes, ya que se diferencian incluso físicamente. "Hasta ahora, aunque conocí...

Extrañas microbios crecen en una cueva subacuática

Muy en el interior del sistema de cavernas de Frasassi en Italia, y a medio kilómetro bajo la superficie, unos buceadores encontraron unas insólitas cuerdas filamentosas microbianas creciendo en el agua fría. Un equipo de investigadores de la Universidad Estatal de Pensilvania ha estado investigando muestras de tales biopelículas. Las cavernas de azufre son un paraíso microbiano. Muchos tipos diferentes de organismos viven en estas cuevas y emplean el azufre. Jennifer L. Macalady, profesora de geociencias, y su equipo, están tratando de confeccionar un mapa sobre qué organismos viven en estas cuevas y en qué puntos exactos del lugar lo hacen, y determinar cómo esa distribución se corresponde con el entorno geoquímico. En este proceso, han descubierto una forma de biopelícula anteriormente desconocida, creciendo en una porción del lago pobre en oxígeno. "Los exploradores de cavernas habían visto estas extrañas biopelículas", explica Macalady. "Así que les pedimos que nos ...

La acidez de los mares aumenta más rápido de lo que se creía

Un grupo de científicos de la Universidad de Chicago ha establecido que el océano se vuelve ácido más rápido de lo que previamente se suponía. Además, estos expertos han encontrado que el aumento de la acidez se correlaciona con los niveles crecientes de dióxido de carbono en la atmósfera. John Timothy Wootton, Profesor de Ecología y Evolución en la Universidad de Chicago, es el autor principal del estudio. De las variables estudiadas que podrían estar relacionadas con los cambios en la acidez del océano, sólo el dióxido de carbono atmosférico exhibió una correlación significativa. El aumento de la concentración de ácidos en el agua daña a ciertos animales marinos y podría reducir la capacidad del océano de absorber dióxido de carbono. Hace tiempo que los científicos vienen alertando de que niveles más altos de dióxido de carbono en la atmósfera deberían aumentar la acidez de los océanos. Sin embargo, las evidencias empíricas de dicho aumento han sido un tanto precarias. El nuevo estud...